Stories for the Future 2024
We invited 11 sci-fi filmmakers and AI researchers to Stanford for Stories for the Future, a day-and-a-half experiment in fostering new narratives about AI. Researchers shared perspectives on AI and filmmakers reflected on the challenges of writing AI narratives. Together researcher-writer pairs transformed a research paper into a written scene. The challenge? Each scene had to include an AI manifestation, but could not be about the personhood of AI or AI as a threat. Read the results of this project.
Related Publications
Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.
Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.
Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.
Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.

Measuring the impact of online misinformation is challenging. Traditional measures, such as user views or shares on social media, are incomplete because not everyone who is exposed to misinformation is equally likely to believe it. To address this issue, we developed a method that combines survey data with observational Twitter data to probabilistically estimate the number of users both exposed to and likely to believe a specific news story. As a proof of concept, we applied this method to 139 viral news articles and find that although false news reaches an audience with diverse political views, users who are both exposed and receptive to believing false news tend to have more extreme ideologies. These receptive users are also more likely to encounter misinformation earlier than those who are unlikely to believe it. This mismatch between overall user exposure and receptive user exposure underscores the limitation of relying solely on exposure or interaction data to measure the impact of misinformation, as well as the challenge of implementing effective interventions. To demonstrate how our approach can address this challenge, we then conducted data-driven simulations of common interventions used by social media platforms. We find that these interventions are only modestly effective at reducing exposure among users likely to believe misinformation, and their effectiveness quickly diminishes unless implemented soon after misinformation’s initial spread. Our paper provides a more precise estimate of misinformation’s impact by focusing on the exposure of users likely to believe it, offering insights for effective mitigation strategies on social media.

Measuring the impact of online misinformation is challenging. Traditional measures, such as user views or shares on social media, are incomplete because not everyone who is exposed to misinformation is equally likely to believe it. To address this issue, we developed a method that combines survey data with observational Twitter data to probabilistically estimate the number of users both exposed to and likely to believe a specific news story. As a proof of concept, we applied this method to 139 viral news articles and find that although false news reaches an audience with diverse political views, users who are both exposed and receptive to believing false news tend to have more extreme ideologies. These receptive users are also more likely to encounter misinformation earlier than those who are unlikely to believe it. This mismatch between overall user exposure and receptive user exposure underscores the limitation of relying solely on exposure or interaction data to measure the impact of misinformation, as well as the challenge of implementing effective interventions. To demonstrate how our approach can address this challenge, we then conducted data-driven simulations of common interventions used by social media platforms. We find that these interventions are only modestly effective at reducing exposure among users likely to believe misinformation, and their effectiveness quickly diminishes unless implemented soon after misinformation’s initial spread. Our paper provides a more precise estimate of misinformation’s impact by focusing on the exposure of users likely to believe it, offering insights for effective mitigation strategies on social media.
Social media platforms are too often understood as monoliths with clear priorities. Instead, we analyze them as complex organizations torn between starkly different justifications of their missions. Focusing on the case of Meta, we inductively analyze the company’s public materials and identify three evaluative logics that shape the platform’s decisions: an engagement logic, a public debate logic, and a wellbeing logic. There are clear trade-offs between these logics, which often result in internal conflicts between teams and departments in charge of these different priorities. We examine recent examples showing how Meta rotates between logics in its decision-making, though the goal of engagement dominates in internal negotiations. We outline how this framework can be applied to other social media platforms such as TikTok, Reddit, and X. We discuss the ramifications of our findings for the study of online harms, exclusion, and extraction.
Social media platforms are too often understood as monoliths with clear priorities. Instead, we analyze them as complex organizations torn between starkly different justifications of their missions. Focusing on the case of Meta, we inductively analyze the company’s public materials and identify three evaluative logics that shape the platform’s decisions: an engagement logic, a public debate logic, and a wellbeing logic. There are clear trade-offs between these logics, which often result in internal conflicts between teams and departments in charge of these different priorities. We examine recent examples showing how Meta rotates between logics in its decision-making, though the goal of engagement dominates in internal negotiations. We outline how this framework can be applied to other social media platforms such as TikTok, Reddit, and X. We discuss the ramifications of our findings for the study of online harms, exclusion, and extraction.