Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
The Global AI Vibrancy Tool 2024 | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

The Global AI Vibrancy Tool 2024

Date
November 14, 2024
Topics
Democracy
Industry, Innovation
Government, Public Administration
Your browser does not support the video tag.
Read Paper
abstract

This methodological paper presents the latest iteration of the Global AI Vibrancy Tool, an interactive suite of visualizations designed to facilitate cross-country comparisons of AI vibrancy across 36 countries, using 42 indicators organized into 8 pillars. The tool offers customizable features that enable users to conduct in-depth country-level comparisons and longitudinal analyses of AI-related metrics.

Share
Link copied to clipboard!
Authors
  • headshot
    Loredana Fattorini
  • headshot
    Nestor Maslej
  • Ray Perrault
    Ray Perrault
  • Vanessa Parli
    Vanessa Parli
  • John Etchemendy headshot
    John Etchemendy
  • Yoav Shoham
    Yoav Shoham
  • Katrina Ligett
    Katrina Ligett
Related
  • Loredana Fattorini
    Research Associate
    headshot

Related Publications

Embedding Democratic Values into Social Media AIs via Societal Objective Functions
Chenyan Jia, Michelle Lam, Michael Bernstein, Minh Chau Mai
Apr 26, 2024
Research
Your browser does not support the video tag.

Mounting evidence indicates that the artificial intelligence (AI) systems that rank our social media feeds bear nontrivial responsibility for amplifying partisan animosity: negative thoughts, feelings, and behaviors toward political out-groups. Can we design these AIs to consider democratic values such as mitigating partisan animosity as part of their objective functions? We introduce a method for translating established, vetted social scientific constructs into AI objective functions, which we term societal objective functions, and demonstrate the method with application to the political science construct of anti-democratic attitudes. Traditionally, we have lacked observable outcomes to use to train such models-however, the social sciences have developed survey instruments and qualitative codebooks for these constructs, and their precision facilitates translation into detailed prompts for large language models. We apply this method to create a democratic attitude model that estimates the extent to which a social media post promotes anti-democratic attitudes, and test this democratic attitude model across three studies. In Study 1, we first test the attitudinal and behavioral effectiveness of the intervention among US partisans (N=1,380) by manually annotating (alpha=.895) social media posts with anti-democratic attitude scores and testing several feed ranking conditions based on these scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants' partisan animosity without compromising their experience and engagement. In Study 2, we scale up the manual labels by creating the democratic attitude model, finding strong agreement with manual labels (rho=.75). Finally, in Study 3, we replicate Study 1 using the democratic attitude model instead of manual labels to test its attitudinal and behavioral impact (N=558), and again find that the feed downranking using the societal objective function reduced partisan animosity (d=.25). This method presents a novel strategy to draw on social science theory and methods to mitigate societal harms in social media AIs.

Research
Your browser does not support the video tag.

Embedding Democratic Values into Social Media AIs via Societal Objective Functions

Chenyan Jia, Michelle Lam, Michael Bernstein, Minh Chau Mai
DemocracyApr 26

Mounting evidence indicates that the artificial intelligence (AI) systems that rank our social media feeds bear nontrivial responsibility for amplifying partisan animosity: negative thoughts, feelings, and behaviors toward political out-groups. Can we design these AIs to consider democratic values such as mitigating partisan animosity as part of their objective functions? We introduce a method for translating established, vetted social scientific constructs into AI objective functions, which we term societal objective functions, and demonstrate the method with application to the political science construct of anti-democratic attitudes. Traditionally, we have lacked observable outcomes to use to train such models-however, the social sciences have developed survey instruments and qualitative codebooks for these constructs, and their precision facilitates translation into detailed prompts for large language models. We apply this method to create a democratic attitude model that estimates the extent to which a social media post promotes anti-democratic attitudes, and test this democratic attitude model across three studies. In Study 1, we first test the attitudinal and behavioral effectiveness of the intervention among US partisans (N=1,380) by manually annotating (alpha=.895) social media posts with anti-democratic attitude scores and testing several feed ranking conditions based on these scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants' partisan animosity without compromising their experience and engagement. In Study 2, we scale up the manual labels by creating the democratic attitude model, finding strong agreement with manual labels (rho=.75). Finally, in Study 3, we replicate Study 1 using the democratic attitude model instead of manual labels to test its attitudinal and behavioral impact (N=558), and again find that the feed downranking using the societal objective function reduced partisan animosity (d=.25). This method presents a novel strategy to draw on social science theory and methods to mitigate societal harms in social media AIs.

Stories for the Future 2024
Isabelle Levent
Deep DiveMar 31, 2025
Research

We invited 11 sci-fi filmmakers and AI researchers to Stanford for Stories for the Future, a day-and-a-half experiment in fostering new narratives about AI. Researchers shared perspectives on AI and filmmakers reflected on the challenges of writing AI narratives. Together researcher-writer pairs transformed a research paper into a written scene. The challenge? Each scene had to include an AI manifestation, but could not be about the personhood of AI or AI as a threat. Read the results of this project.

Research

Stories for the Future 2024

Isabelle Levent
Machine LearningGenerative AIArts, HumanitiesCommunications, MediaDesign, Human-Computer InteractionSciences (Social, Health, Biological, Physical)Deep DiveMar 31

We invited 11 sci-fi filmmakers and AI researchers to Stanford for Stories for the Future, a day-and-a-half experiment in fostering new narratives about AI. Researchers shared perspectives on AI and filmmakers reflected on the challenges of writing AI narratives. Together researcher-writer pairs transformed a research paper into a written scene. The challenge? Each scene had to include an AI manifestation, but could not be about the personhood of AI or AI as a threat. Read the results of this project.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health
Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Feb 14, 2025
Research
Your browser does not support the video tag.

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Research
Your browser does not support the video tag.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health

Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Foundation ModelsGenerative AIMachine LearningNatural Language ProcessingSciences (Social, Health, Biological, Physical)HealthcareFeb 14

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Finding Monosemantic Subspaces and Human-Compatible Interpretations in Vision Transformers through Sparse Coding
Romeo Valentin, Vikas Sindhwan, Summeet Singh, Vincent Vanhoucke, Mykel Kochenderfer
Jan 01, 2025
Research
Your browser does not support the video tag.

We present a new method of deconstructing class activation tokens of vision transformers into a new, overcomplete basis, where each basis vector is “monosemantic” and affiliated with a single, human-compatible conceptual description. We achieve this through the use of a highly optimized and customized version of the K-SVD algorithm, which we call Double-Batch K-SVD (DBK-SVD). We demonstrate the efficacy of our approach on the sbucaptions dataset, using CLIP embeddings and comparing our results to a Sparse Autoencoder (SAE) baseline. Our method significantly outperforms SAE in terms of reconstruction loss, recovering approximately 2/3 of the original signal compared to 1/6 for SAE. We introduce novel metrics for evaluating explanation faithfulness and specificity, showing that DBK-SVD produces more diverse and specific concept descriptions. We therefore show empirically for the first time that disentangling of concepts arising in Vision Transformers is possible, a statement that has previously been questioned when applying an additional sparsity constraint. Our research opens new avenues for model interpretability, failure mitigation, and downstream task domain transfer in vision transformer models. An interactive demo showcasing our results can be found at https://disentangling-sbucaptions.xyz, and we make our DBK-SVD implementation openly available at https://github.com/RomeoV/KSVD.jl.

Research
Your browser does not support the video tag.

Finding Monosemantic Subspaces and Human-Compatible Interpretations in Vision Transformers through Sparse Coding

Romeo Valentin, Vikas Sindhwan, Summeet Singh, Vincent Vanhoucke, Mykel Kochenderfer
Computer VisionJan 01

We present a new method of deconstructing class activation tokens of vision transformers into a new, overcomplete basis, where each basis vector is “monosemantic” and affiliated with a single, human-compatible conceptual description. We achieve this through the use of a highly optimized and customized version of the K-SVD algorithm, which we call Double-Batch K-SVD (DBK-SVD). We demonstrate the efficacy of our approach on the sbucaptions dataset, using CLIP embeddings and comparing our results to a Sparse Autoencoder (SAE) baseline. Our method significantly outperforms SAE in terms of reconstruction loss, recovering approximately 2/3 of the original signal compared to 1/6 for SAE. We introduce novel metrics for evaluating explanation faithfulness and specificity, showing that DBK-SVD produces more diverse and specific concept descriptions. We therefore show empirically for the first time that disentangling of concepts arising in Vision Transformers is possible, a statement that has previously been questioned when applying an additional sparsity constraint. Our research opens new avenues for model interpretability, failure mitigation, and downstream task domain transfer in vision transformer models. An interactive demo showcasing our results can be found at https://disentangling-sbucaptions.xyz, and we make our DBK-SVD implementation openly available at https://github.com/RomeoV/KSVD.jl.

OSZAR »